Affiliation:
1. Maternal-Fetal Pharmacology and Bio-Development Laboratories, Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
2. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
Abstract
The purpose of this study was to conduct initial characterization of membrane vesicles isolated from human placenta by agitation of villous tissue (apical and basal) as well as vesicles obtained following dual perfusion of placental lobule. The morphology, physical and biological properties
of the isolated vesicles were determined by electron microscopy, dynamic light scattering, and immunoblotting as well as nanoflow liquid chromatography-mass spectrometry proteomics analysis. CD-1 male mice were used to test the biocompatibility of the vesicles in vivo and assess the
biodistribution of fluorescently labeled apical and perfusion vesicles. The vesicles obtained following placental perfusion and the apical vesicles had Z-average diameters of 199±23 nm and 246±24 nm, respectively, and demonstrated nanocarrier stability, low toxicity, and low
immunogenicity. On the other hand, administration of basal vesicles resulted in animal demise with LD50 of 0.85 μgprotein/g. Both fluorescently labeled apical and perfusion vesicles were detected in the lungs, liver, kidneys, and spleen of CD-1 mice within 24
h of administration. However, there were differences in organ distribution of these vesicles over 24 hours time period. These data suggest that placental apical and perfusion vesicles have a potential for further development as biological vehicles for drug delivery.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献