Hypoxia-Responsive Molecular Probe Lighted up by Peptide Self-Assembly for Cancer Cell Imaging

Author:

Ai Sifan1,Dong Wenhao1,Li Jie1,Yang Zhimou1

Affiliation:

1. State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, and National Institute of Functional Materials, Nankai University, Tianjin 300071, People’s Republic of China

Abstract

Hypoxia is a characteristic feature of most solid tumors, which promotes the proliferation, metastasis, and invasion of tumors and stimulates the resistance of cancer treatments, leading to the serious consequences of tumor recurrence. The exploration of hypoxia detection technology will aid tumor diagnosis and treatment. Fluorescence imaging technology is an accurate and efficient hypoxia detection technology. It has attracted significant research interest, but designing novel fluorescence probes, especially stimuli-responsive probes with high sensitivity and low toxicity is still challenging. In this work, we report a hypoxia-responsive molecular bioprobe lighted up by peptide self-assembly, which contains aggregationinduced emission (AIE) fluorescent molecule TPE, hypoxia-responsive azo group (–N═N–), the self-assembling peptide GFFY, and targeting ligand RGD. The resulting peptide derivative TPE-GFFY-N═N-EERGD forms supramolecular nanofibers but emit weak fluorescence because the azobenzene moiety can effectively quench the fluorescence of the TPE dye. However, the fluorescence-quenched nanofibers could be lighted up dramatically when the azo group is reduced. More importantly, this “turn-on” supramolecular fluorescence bioprobe enables effective detecting tumor hypoxia due to the overexpressed azoreductase in the tumor microenvironment. This work affords a paradigm of designing environmentsensitive fluorescent molecular probes for tumor hypoxia imaging.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3