Nanocapsule-Based Reactive Nano-Fragrances with Slow-Release and Antibacterial Performances for Applications of Commodities

Author:

Wang Wenli1,Qiu Xinyu1,Dong Qiushi2,Wang Jingwen1,Hao Qiulian1,Liu Guiying3,Li Yan4,Zhang Xin1

Affiliation:

1. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China

2. Beijing Cancer Hospital, Beijing, 100142, P. R. China

3. Department of Pediatrics, Capital Medical University Affiliated Beijing Anzhen Hospital, Beijing, 100029, P. R. China

4. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China

Abstract

Fragrances are widely used in everyday life. However, too fast volatilization rates and poor adhesion on substrates limit their applications. In this study, reactive nano-fragrance based on cyanuric chloride (CYC)-modified chitosan (CSCYC) were prepared by a solvent evaporation method. First, CS-CYC was synthesized. Subsequently, CS and CS-CYC were utilized to prepare nano-fragrances. The results demonstrated that adding CS and CS-CYC could significantly improve the fragrance encapsulation efficiency and reduce the release rate of phenylethanol. phenylethanol Moreover, the adhesion of nano-capsules on commodities was improved with CS by forming hydrogen bonds. CYC on the surface of the nanocapsules further enhanced the conglutination of nano-fragrances on commodities by a condensation reaction with wallpaper. Additionally, the addition of both CS and CS-CYC imparted antibacterial activity for the nano-fragrances against Gram-positive and Gram-negative bacteria with excellent biosafety. Therefore, the reactive nano-fragrances with antimicrobial activity and slow-release properties could provide a comfortable and healthy living environment, making them have vast application potential.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3