The Interaction Between Cholesterol-Modified Amino-Pullulan Nanoparticles and Human Serum Albumin: Importance of Nanoparticle Positive Surface Charge

Author:

Tao Xiao-Jun1,Yi Yang-Fei1,Wang Hong-Yi1,Shen Zhe-Hao1,Peng Li-Ping1,Liu En-Ze1,Wang Jing1,Wang Rong1,Ling Xiao1,Zhang Qiu-Fang2,Lv Yuan1,Yi Shang-Hui1

Affiliation:

1. Key Laboratory of Molecular Epidemiology of Hunan Province (LY, YSH), and Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan (TXJ, YYF, WHY, SZH, PLP, LEZ, WJ, WR, LX), School of Medicine, Hunan Normal University, Changsha, 410081, China

2. Hubei Key Laboratory of Wudang Local Chinese Medicine Research (ZQF), Department of Laboratory of Pharmacology, Hubei University of Medicine, Shiyan, 442000, China

Abstract

To study the interaction of nanoparticles (NPs) and human serum albumin (HSA), we designed three different aminosubstituted hydrophobically cholesterol-modified pullulan NPs (CHPN NPs). Dynamic light scattering (DLS) revealed sizes of 145, 156, and 254 nm and zeta potentials of 0.835, 7.22, and 11.7 mV for CHPN1, CHPN2, and CHPN3 NPs, respectively. Isothermal titration calorimetry (ITC) revealed that the binding constants were (1.59±0.45)×105 M−1, (2.08±0.26)×104 M−1, and (2.71±0.92)×104 M−1, respectively, and HSA coverage was (1.52±0.12), (0.518±0.316), and (0.092±0.015). Fluorescence spectroscopy of HSA revealed that the fluorescence intensity was quenched by CHPN NPs, which was maintained with a long final complexation period. Circular dichroism (CD) revealed a quick decrease in the α-helix content of HSA to 39.1% after the final complexation. NPs with a more positive charge led to a greater decrease in α-helix content than occurred in other NPs, so the NP surface charge played a role in the HSA–NP interaction. After HSA binding, the surface charge was −3.66±0.12 for CHPN1, −2.65±0.06 for CHPN2 and −1.12±0.28 mV for CHPN3 NPs. The NP surface property changed because of HSA binding, which is important for NP applications.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3