Persimmon Tannin-Reduction Graphene Oxide-Platinum-Palladium Nanocomposite Decorated on Screen-Printed Carbon Electrode for Enhanced Electrocatalytic Reduction of Hydrogen Peroxide

Author:

Li Guiyin1,Xue Yewei2,Wang Chaoxian1,Li Xinhao2,Li Shengnan2,Huang Yong3,Zhou Zhide2

Affiliation:

1. College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, People’s Republic of China

2. School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, People’s Republic of China

3. National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, 530021, China

Abstract

According to studies, Hydrogen peroxide (H2O2) is a significant biomarker of physiological processes. Unnormal H2O2 levels in human body may result in diseases. Hence, there is an increasing demand for monitoring the H2O2 concentrations in biological specimen. Here, we construct a non-enzymatic H2O2 electrochemical biosensor based on persimmon tannin-reduced graphene oxide-platinum-palladium nanocomposite (PrG-Pt@Pd NPs) modified with screen-printed carbon electrode (SPE). Combined with suitable electrocatalytic mode for Pt@Pd NPs, high specific large specific volume and good electrical conductivity of RGO, well as the superior sorption capacity of PT for metal-based nano-ion, the PrGPt@Pd striped pleasing heterogeneous catalytic activity toward H2O2 reduction via the synergistic effect. In experimental conditions of optimal, this non-enzymatic electrochemical sensor exhibited excellent electrocatalytic performance for H2O2 with less negative potential (−0.5 V), fast response time (<3 s), it shows good linearity in the range of 5.0–100.0 μM, in addition to this LOD of this sensor was 0.059 μM as well as the excellent sensitivity of the sensor (13.696 μμM−1·cm−2). Due to excellent specificity, lower detection limit, and good recovery (98.70–99.96%) in the spiked measurements of human serum samples, this non-enzymatic electrochemical biosensor paves the way for H2O2 detection at ultra-low concentrations in physiology and diagnosis.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3