The Treatment of Human Colon Xenografts Tumor in Mice with Platinum Nanosphere-5-Fluorouracil-Bovine Albumin

Author:

Li Hui1,Sun Yi1,Gao Li-Li1,Tang Yong-Feng2,Zhao Zheng3

Affiliation:

1. Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China

2. Department of Pathology, Nanjing Medical University, Affiliated Nanjing Maternity and Child Health Care Hospital, Jiangsu, Nanjing 210004, China

3. Department of Oncology, Shaanxi Cancer Hospital, Xian 710061, China

Abstract

Because 5-fluorouracil (FLU) has side effects in cancer treatment, the use of FLU in therapeutic activities is limited. To overcome this challenge, the use of nano-platforms for its targeting is f great interest in biomedical fields. For this purpose, to reduce the FLU toxicity and improve the its efficacy, platinum nanospheres (PtNS) with anti-cancer properties were used. After producing PtNS by hydrothermal method and loading FLU and bovine albumin (bAL) (PtNS-FLU-bAL), its physicochemical properties were investigated. After evaluating the drug release capability, the toxicity of PtNS-FLU-bAL on HCT-116 cells was assessed by MTT and flow-cytometry. Also, the effects of the nanospheres on tumor status, liver and kidney tissues were evaluated. The results indicate uniform size of the PtNS-FLU-bAL (79±2.04 nm) with spherical shape, loading of more than 50% of the FLU (in the ratio of 2:1 FLU to PtNS-bAL), optimal release of the FLU from the PtNS-FLU-bAL (83.1% in pH = 6), and the high toxicity of the PtNS-FLU-bAL on HCT-116 cells. Also, the toxicity mechanism indicated more apoptosis induction by increasing the expression of TNF-α, Bax, Fas, and Caspase-3 genes for PtNS-FLU-bAL compared to the free FLU. Moreover, the results showed a higher FLU concentration in cancerous tissue and a 1.5-fold reduction in tumor growth by the PtNS-FLU-bAL compared to the free FLU. Overall, the results show that the PtNS-FLU-bAL can enhance the success of colorectal cancer treatment effectively and safely.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3