Itraconazole for Topical Treatment of Skin Carcinogenesis: Efficacy Enhancement by Lipid Nanocapsule Formulations

Author:

El-Sheridy Nabila A.1,El-Moslemany Riham M.1,Ramadan Alyaa A.1,Helmy Maged W.2,El-Khordagui Labiba K.1

Affiliation:

1. Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt

2. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, 22514, Beheira, Egypt

Abstract

Itraconazole (ITC), an antifungal drug with anticancer activity, shows potential for oral treatment of skin cancer. There is clinical need for topical ITC for treating low-risk skin carcinogenesis. Our objective was to develop ITC nanoformulations with enhanced anticancer efficacy. Lipid nanocapsules (LNC), either unmodified (ITC/LNC) or modified with the amphiphiles miltefosine (ITC/MF-LNC) or the lipopeptide biosurfactant surfactin (ITC/SF-LNC) as bioactive additives were developed. LNC formulations showed high ITC entrapment efficiency (>98%), small diameter (42–45 nm) and sustained ITC release. Cytotoxicity studies using malignant SCC 9 cells and normal human fibroblasts (NHF) demonstrated significant enhancement of ITC anticancer activity and selectivity for cancer cells by the LNC formulations and a synergistic ITC-amphiphile interaction improving the combination performance. Treatment of intradermal tumor-bearing mice with the ITC nanoformulation gels compared with ITC and 5-FU gels achieved significant tumor growth inhibition that was remarkably enhanced by ITC/MF-LNC and ITC/SF-LNC as well as recovery of skin architecture. Molecularly, tumoral expression of Ki-67 and cytokeratin proliferative proteins was significantly suppressed by LNC formulations, the suppressive effect on cytokeratins was superior to that of 5-FU. These findings provide new evidence for effective topical treatment of low-risk skin carcinogenesis utilizing multiple approaches that involve drug repurposing, nanotechnology, and bioactive amphiphiles as formulation enhancing additives.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3