Treatment of Traumatic Cartilage Defects of Rabbit Knee Joint by Adipose Derived Stem Cells Combined with Kartogenin Hydroxyapatite Nano-Microsphere Complex

Author:

Wang Zhan1,Han Xingwen1,Song Zhengdong1,Gao Zhao1,Zhao Yuhao1,Wang Wenji1

Affiliation:

1. Department of Orthopaedics, The First School of Clinical Medicine of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China

Abstract

Kartogenin (KGN) can effectively promote the differentiation of adipose derived stem cells (ADSCs) into chondrocytes. With the help of three-dimensional slow-release technology, nano-microspheres are generated and used for cartilage repair. First, KGN solution was prepared, which was dissolved in distilled water, and NaOH solution, HEPES buffer, sodium chloride particles, and hydroxyapatite (HA) solution were added to prepare KGN-HA gel solution containing KGN. ADSCs were isolated from the posterior iliac of four-week-old New Zealand rabbits. After 0.5 mL of rabbit second-generation ADSCs suspension was taken, 2 mL KGN-HA gel solution was added, and they were mixed well to obtain ADSCs/KGN-HA gel. After drying treatment, ADSCs/KGN-HA nanospheres were precipitated. In the experiment, the minimum inhibitory concentration (MIC) of Staphylococcus aureus (MIC) > 2 μg/mL in each group of KGN-HA gel solution was reached within 30 days. Group K3 had the highest KGN encapsulation rate and the largest cumulative release. The biological activity of ADSCs was good in the ADSCs/KGN-HA nanoparticle solution. After two weeks of incubation, the nanospheres were positive for type II collagen staining/toluidine blue staining, that was, chondrocyte phenotype. The rabbit knee articular cartilage defect model was established. The defect part was filled with ADSCs/KGN-HA gel, which was similar in color to the surrounding tissues. The two sides of the tissue section and the surrounding cartilage tissue healed well, and no carrier material remained. Moreover, the cells were round, with cartilage lacuna formed around them, and after the simple periosteum was covered and repaired, the surface was sunken. The cell structure changed, and the healing with the surroundings was poor. In summary, under the slow release of KGN, ADSCs/KGN-HA nanospheres made ADSCs maintain a good biological form, which grew and proliferated normally. The ADSCs/KGN-HA nanoparticles cultured in vitro had a good repair effect on the animal model of articular cartilage defects.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Reference50 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3