Affiliation:
1. Department of Orthopaedics, The First School of Clinical Medicine of Lanzhou University, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
Abstract
Kartogenin (KGN) can effectively promote the differentiation of adipose derived stem cells (ADSCs) into chondrocytes. With the help of three-dimensional slow-release technology, nano-microspheres are generated and used for cartilage repair. First, KGN solution was prepared, which was
dissolved in distilled water, and NaOH solution, HEPES buffer, sodium chloride particles, and hydroxyapatite (HA) solution were added to prepare KGN-HA gel solution containing KGN. ADSCs were isolated from the posterior iliac of four-week-old New Zealand rabbits. After 0.5 mL of rabbit second-generation
ADSCs suspension was taken, 2 mL KGN-HA gel solution was added, and they were mixed well to obtain ADSCs/KGN-HA gel. After drying treatment, ADSCs/KGN-HA nanospheres were precipitated. In the experiment, the minimum inhibitory concentration (MIC) of Staphylococcus aureus (MIC) >
2 μg/mL in each group of KGN-HA gel solution was reached within 30 days. Group K3 had the highest KGN encapsulation rate and the largest cumulative release. The biological activity of ADSCs was good in the ADSCs/KGN-HA nanoparticle solution. After two weeks of incubation, the nanospheres
were positive for type II collagen staining/toluidine blue staining, that was, chondrocyte phenotype. The rabbit knee articular cartilage defect model was established. The defect part was filled with ADSCs/KGN-HA gel, which was similar in color to the surrounding tissues. The two sides of
the tissue section and the surrounding cartilage tissue healed well, and no carrier material remained. Moreover, the cells were round, with cartilage lacuna formed around them, and after the simple periosteum was covered and repaired, the surface was sunken. The cell structure changed, and
the healing with the surroundings was poor. In summary, under the slow release of KGN, ADSCs/KGN-HA nanospheres made ADSCs maintain a good biological form, which grew and proliferated normally. The ADSCs/KGN-HA nanoparticles cultured in vitro had a good repair effect on the animal model
of articular cartilage defects.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献