Co-Encapsulation of Violacein and Iron Oxide in Poly(lactic acid) Nanoparticles for Simultaneous Antibacterial and Anticancer Applications

Author:

Kanelli Maria1,Saleh Bahram2,Webster Thomas J.2,Vouyiouka Stamatina3,Topakas Evangelos1

Affiliation:

1. IndBioCat Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens, 15780, Greece

2. Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA

3. Laboratory of Polymer Technology, School of Chemical Engineering, NTUA, Athens, 15780, Greece

Abstract

To date, the possibility of drug-resistant bacterial infections in hospitals and intensive care units comprises a significant concern especially for immunocompromised cancer patients. In the current study, violacein and superparamagnetic iron oxide nanoparticles were co-encapsulated in polylactic acid nanoparticles (vio-Fe3O4-PLA) and tested for their antimicrobial and anticancer activity. The loaded nanoparticles presented efficient saturation magnetization that rendered this nanosystem a promising candidate for magnetic targeting. Moreover, violacein released from the nanoparticles at 500 μg/mL successfully inhibited the growth of the “superbug” methicillin-resistant Staphylococcus aureus (MRSA) with an IC50 value of 595.8 μg/mL, while it did not prove effective against multi-drug-resistant Escherichia coli at concentrations of 10–1000 μg/mL. Finally, a concentration of 500 μg/mL of drug loaded magnetic nanoparticles induced an over 80% growth inhibition of glioblastoma and melanoma cancer cell lines with IC50 values of 221.30 and 201.60 μg/mL, respectively. Since bacterial infections are a key clinical problem for cancer patients due to their compromised immune systems, the presented results suggest that our system should be further studied for its simultaneous anti-bacterial and anti-cancer properties, as it comprises a promising strategy for combating bacterial infections and providing anticancer activity through magnetic-targeted delivery.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3