Affiliation:
1. State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University, Urumqi 830054, China
2. Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
Abstract
Near-infrared fluorescence imaging, with its high sensitivity, non-invasiveness, and superior real-time feedback properties, has become a powerful skill for accurate diagnosis in the clinic. Nanoparticle-assisted chemotherapy is an effective cure for cancer. Specifically, the combination
of near-infrared fluorescence imaging with chemotherapy represents a promising method for precise diagnosis and treatment of cervical cancer. To realize this approach, it is necessary to design and synthesize therapeutic nano-probes with detection abilities. In this work, an organic NIRF emissive
heptamethine cyanine dye, IR783, was utilized and encapsulated in biocompatible drug-carrier liposomes). Then, the anticancer drug doxorubicin was loaded, to form LP-IR783-DOX nanoparticles. The LP-IR783-DOX nanoparticles had spherical shapes and were smoothly dispersed in aqueous solutions.
Favorable absorption (a peak of 800 nm) and fluorescence (a peak of 896 nm) features were obtained from LP-IR783-DOX nanoparticles in the near-infrared region. Moreover, the specific detection abilities of nanoparticles were confirmed in different cell lines, and nanoparticles exhibited strong
detection abilities in human cervix carcinoma cells in particular. To analyze the chemotherapeutic properties of LP-IR783-DOX nanoparticles, live HeLa cells were studied in detail, and the application of these NPs resulted in a chemotherapeutic efficiency of 56.75% based on fluorescein isothiocyanate
staining and flow cytometry. The results indicate that nanoparticles have great potential for theranostic application of fluorescence imaging and chemotherapy in cases of cervical cancer.
Publisher
American Scientific Publishers
Subject
Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献