Reactive Oxygen Species-Responsive Polyether Micelle Nanomaterials for Targeted Treatment of Ulcerative Colitis

Author:

Zhao Xin-Xin1,Ma Shan-Bo2,Wen Jin-Peng1,Hu Da-Tao1,Gao Ju-Shan1,Peng Qiao3,Zhang Yu-Chen3,Wang Jin-Qing3,Wang Ke1,Shi Xiao-Peng2

Affiliation:

1. School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

2. Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China

3. Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China

Abstract

As one of the most challenging inflammatory diseases, the incidence of ulcerative colitis (UC) is increasing year by year, but the existing therapeutic drugs are not effective and lack of targeting. Nanomaterials are expected to become promising delivery system due to their good targeting effects. Here, we designed a nanomaterial sensitive to reactive oxygen species, which can be used to treat IBD, especially UC. It is a self-assembled polyether micelle that can be oxidized at the inflammation site where the concentration of reactive oxygen increases, and effectively release the encapsulated budesonide (Bud). Experiments have proved that for DSS-induced colitis, the synthetic drug-loaded nanoparticles have excellent therapeutic effects, can effectively repair intestinal barrier, and significantly improve the damaged colon tissue. At the same time, it has a beneficial regulatory effect on inflammatory factors. Molecular mechanism studies have shown that it achieves its therapeutic effects by activating the peroxisome proliferators-activated receptors-γ (PPAR-γ) pathway and inhibiting the nuclear factor (NF)-κB pathway. This study proves that oral nano-micelles have an important impact on improving the efficacy of UC treatment drugs and have far-reaching significance for the targeted treatment of gastrointestinal diseases.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3