Formulation Design, Characterization and In-Vivo Assessment of Cefixime Loaded Binary Solid Lipid Nanoparticles to Enhance Oral Bioavailability

Author:

Kamran Mahwish1,Khan Mir Azam1,Shafique Muhammad2,Alotaibi Ghallab2,Mouslem Abdulaziz Al3,Rehman Maqsood1,Khan Muhammad Asghar1,Abdullah 1,Gul Sumaira4

Affiliation:

1. Department of Pharmacy, University of Malakand, Chakdara, Dir (L), 18800, Khyber Pakhtunkhwa, Pakistan

2. Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, 15572, KSA

3. Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia

4. Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan

Abstract

Cefixime; widely employed cephalosporin antibiotic is unfortunately coupled to poor water solubility with resultant low oral bioavailability issues. To solve this problem micro-emulsion technique was used to fabricate binary SLNs using blend of solid and liquid lipids, surfactant as well as co-surfactant. The optimized nano suspension was characterized followed by modification to solidified dosage form. During characterization, optimized nano-suspension (CFX-4) produced particle size 189±2.1 nm with PDI 0.310±0.02 as well as −33.9±2 mV zeta potential. Scanning electron microscopy (SEM) presented nearly identical and spherical shaped particles. Differential scanning calorimetry and X-ray powder diffraction analysis ascertained decrease in drug’s crystallinity. In-vitro release of drug pursued zero-order characteristics and demonstrated non-fickian pattern of diffusion. The freeze dried nano suspension (CFX-4) was transformed to capsule dosage form to perform comparison based In-Vivo studies. In-Vivo evaluation corresponded to 2.20-fold and 2.11-fold enhancement in relative bioavailability of CFX nano-formulation (CFX-4) as well as the prepared capsules respectively in contrast to the commercialized product (Cefiget®). In general; the obtained results substantiated superior oral bioavailability along with sustained pattern of drug release for CFX loaded binary nano particles. Thus, binary SLNs could be employed as a resourceful drug carrier for oral CFX delivery.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress in Pharmacokinetics;Journal of Advances in Physical Chemistry;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3