Treg Cell Evaluation in Patients with Acquired Immune Deficiency Syndrome with Poor Immune Reconstitution and Human Immunodeficiency Virus-Infected Treg Cell Prevention by Polymeric Nanoparticle Drug Delivery System

Author:

Liu Linsong1,Yuan Gang1,Sun Fuyan1,Shi Jinchuan2,Chen Heling1,Hu Yaoren3

Affiliation:

1. Acute Infection Department of HuaMei Hospital, University of Chinese Academy of Science, Ningbo, 315000, Zhejiang, PR China

2. The Second Department of Infection, Hangzhou Xixi Hospital, Hangzhou, 310023, Zhejiang, PR China

3. Department of Hepatology, Ningbo Huamei Hospital, University of Chinese Academy of Sciences, Ningbo, 315000, Zhejiang, PR China

Abstract

To better deliver antiretroviral drugs for treating patients with acquired immune deficiency syndrome (AIDS) with poor immune reconstitution, a novel nanopole capsule was designed in this study. Forty-eight patients with AIDS with poor immune reconstitution were chosen as subjects to test their immune state. CD4+ T and Regulatory T cells (Treg) infected with HIV were cultured to test polyethyleneimine (PEI) and polychitosan (PC) drug delivery system efficiency. The infiltration efficiency test was performed to study the drug delivery efficiency of the delivery systems, and the cell numbers of CD4+ T and Treg cells infected with HIV were calculated to evaluate the therapeutic effect. The results showed that patients with AIDS with poor immune reconstitution had lower CD4+ T cell count and higher Treg cell count. Furthermore, the infiltration efficiency of the PC drug delivery system was higher than that of the PEI drug delivery system, and the therapy efficiency of antiretroviral drugs was greatly improved in the PC group. Additionally, the improvement of CD4+ T and Treg cells damaged by HIV was greater in the PC group. Sequentially, the PC system can better deliver and release loaded antiretroviral drugs and may be a better choice for treating patients with AIDS with poor immune reconstitution in the future.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3