A Nucleus-Targeted Nanosystem Integrated with Photodynamic Therapy and Chemotherapy

Author:

Xin Jing1,Wang Sijia1,Wang Jing1,Fu Lei1,Zhang Zhenxi1,Yao Cuiping1

Affiliation:

1. Xi’an Jiaotong University, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, China

Abstract

Minimally invasive photodynamic therapy, destroying lesions with a light-activated photosensitizer, has been increasingly performed since it is highly efficiency, safe, synergistically compatible, repeatable, and minimally-invasive, with few adverse reactions. However, the most present photosensitizer or nanodrug delivery system containing a photosensitizer can target tumor cells but rarely cell nuclei. In this regard, the nucleus-targeting drug delivery system has been developed aiming impair tumor cells in an efficient and direct manner. In this study, the cationic liposome (Clip) drug delivery system integrated with low dose nucleus-targeting chemotherapeutic drug Doxorubicin (DOX) and photosensitizer AlPcS4 (Clip-AlPcS4@DOX) was synthesized. Among them, Clip was used to efficiently load drugs into cells almost at the same time, low dose DOX was used to open the channel for the materials to enter the nucleus on the premise of ensuring low cytotoxicity and then introduced photosensitizer into the nucleus, AlPcS4 photosensitizer was used to damage directly and efficiently through the photodynamic therapy (PDT) effect after entering the nucleus. In summary, a nucleus-targeting nanodrug delivery system (Clip-AlPcS4@DOX) was designed and synthesized and could be induced cell apoptosis more quickly and efficiently. Therefore, it could be a promising nucleus-targeting nanosized reagent integrating the PDT and chemotherapy for gastric therapy.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3