Aristolochic Acid Nephropathy: A Novel Suppression Strategy of Carbon Dots Derived from Astragali Radix Carbonisata

Author:

Dong Li-Yang1,Cao Tian-You2,Guo Ying-Hui1,Chen Rui1,Zhao Yu-Sheng1,Zhao Yan1,Kong Hui1,Qu Hui-Hua1

Affiliation:

1. School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China

2. School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, People’s Republic of China

Abstract

Despite strict restrictions on the use of aristolochic acids (AAs)-containing merchandise or drugs in many countries, a substantial amounts of occurrences aristolochic acid nephropathy (AAN) had been accounted worldwide. Clinically, there is no effective incurable therapy regimen to reverse the progression of AAN. Although carbon dots have shown surprising bioactivity, research on the acute kidney injury caused by AAs is lacking. Here, a novel biomass-carbon dots from Astragali Radix (AR) as precursors was synthesized through one-step pyrolysis treatment. The ARC-carbon dots (ARC-CDs) was demonstrated in detail for its inhibitory effect on aristolochic acid nephropathy in a mice model. The indexes of inflammatory cytokines as well as oxidative stress were significantly reduced by the ARC-CDs in kidney tissue cells. Additionally, the ARC-CDs administration resulted in a large decrease in positive apoptotic cells according to TUNEL labeling and western blotting, which may be connected to the ARC-CDs’ modulation of the protein in the Akt/Mdm2/p53 signaling pathway. These findings show that ARC-CDs have remarkable anti-inflammatory, antioxidant, and anti-apoptotic capabilities against acute kidney injury spurred by aristolochic acids via the AKT/Mdm2/p53 signaling pathway.

Publisher

American Scientific Publishers

Subject

Pharmaceutical Science,General Materials Science,Biomedical Engineering,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3