Synthesis and Photoluminescence of Amorphous Ca5Ge2O9 Nanowires

Author:

Tsai Meng-Yen,Yu Chung-Yi,Perng Tsong-Pyng

Abstract

A new method to prepare amorphous Ca5Ge2O9 nanowires is demonstrated in the present study. Germanium nanoparticles with the size ranging from 10 to 50 nm were first prepared by a vapor condensation technique. Upon immersing the nanoparticles in Ca(OH)2 aqueous solution, hydrated Ca5Ge2O9 nanowires were formed rapidly. The phase was determined by X-ray diffraction, and the stoichiometry of Ca:Ge was further confirmed by energy-dispersive X-ray spectroscopic and inductively coupled plasma-mass spectrometric analyses. The diameter of nanowires varied from several tens to more than 100 nm, and the length increased with aging time up to the completion of reaction. After dehydrating at 400 °C, the nanowires became amorphous, and the stoichiometry of Ca:Ge remained unchanged. A blue-violet luminescence was detected from these amorphous nanowires. The emission band distributed from 300 to 550 nm, with the main peak locating at 380 nm. Ge-associated luminescence centers are proposed to be responsible for this emission. The formation of amorphous Ca5Ge2O9 nanowires may provide a new thinking to prepare other kinds of amorphous one-dimensional nanomaterials.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3