Preparation, Microstructure and Optical Absorption Behaviour of NiO Thin Films

Author:

Srivastava Amit Kumar,Thota Subhash,Kumar Jitendra

Abstract

Nickel oxide thin films have been prepared by spin coating on glass, silicon(111) and quartz substrate using a solution of nickel acetate tetrahydrate in 2-methoxyethanol and mono-ethanolamine and subsequent annealing at 300–600 °C for 2 h in air. These films have been characterized with regard to phase, microstructure and optical absorption using X-ray diffraction, atomic force microscopy and UV-visible spectrophotometry, respectively. It is shown that NiO thin films have polycrystalline nature and possess an f.c.c. (NaCl-type) structure with lattice parameter varying with annealing temperature (T) and solution molarity; typical value being a = 4.186 Å with T = 500 °C and molarity 0.5 M. The microstructure clearly reveals the formation of ellipsoids with average projected major and minor diameters as ∼58 and ∼38 nm, respectively and nano-rods of average diameter ∼12nm with aspect ratio of ∼5.2. On the other hand, thin films formed by dip coating with the same solution contain spherical particles of average diameter ∼28 nm. NiO thin films exhibit (i) high optical transmittance (80–95%) in the wave length range of 400–800 nm, (ii) sharp absorption in the interval 300–400 nm like that of semiconductor/insulator, (iii) decrease of energy band gap, Eg (value lies in the range 3.66–3.83 eV; bulk value being 3.55 eV) with increase of annealing temperature and molarity both. The higher values of band gap have been attributed to the reduced average size of the crystallites.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3