Growth of Carbon Nanotubes on Si Substrate Using Fe Catalyst Produced by Pulsed Laser Deposition
-
Published:2008-11-01
Issue:11
Volume:8
Page:5748-5752
-
ISSN:1533-4880
-
Container-title:Journal of Nanoscience and Nanotechnology
-
language:en
-
Short-container-title:j nanosci nanotechnol
Author:
Krishnamurthy S.,Donnelly T.,McEvoy N.,Blau W.,Lunney J. G.,Teh A. S.,Teo K. B. K. T.,Milne W. I.
Abstract
We report the growth of carbon nanotubes on the size controlled iron catalytic nanoparticles. The nanotubes were grown by thermal chemical vapour deposition (CVD) in the temperature range 600–850 °C. The Fe films were deposited on silicon by pulsed laser deposition in vacuum.
Atomic force microscopy measurements were performed on the catalytic nanoparticles. The topography of the catalytic nanoparticles shows the homogenous distribution of Fe catalyst. We observe the nanotubes are produced only at temperatures between 650 and 800 °C, and within this narrow
temperature regime the yield of nanotubes reaches a maximum around 750 °C and then declines. Raman measurements illustrate a high G/D peak ratio indicating good nanotube quality. By further defining the size of the catalyst the diameter of these carbon nanotubes can be controlled.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献