Author:
Milne S. B.,Fu Y. Q.,Luo J. K.,Flewitt A. J.,Pisana S.,Fasoli A.,Milne W. I.
Abstract
Nanocrystalline Si films were prepared with a RF-PECVD system using different SiH4/H2 ratios, plasma powers, substrate temperatures and annealing conditions. The film's intrinsic stress was characterized in relation to the crystallization fraction. Results show
that an increasing H2 gas ratio, plasma power or substrate temperature can shift the growth mechanism across a transition point, past which nanocrystalline Si is dominant in the film structure. The film's intrinsic stress normally peaks during this transition region. Different mechanisms
of stress formation and relaxation during film growth were discussed, including ion bombardment effects, hydrogen induced bond-reconstruction and nanocomposite effects (nanocrystals embedded in an amorphous Si matrix). A three-parameter schematic plot has been proposed which is based on the
results obtained. The film structure and stress are presented in relation to SiH4 gas ratio, plasma power and temperature.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献