Author:
Mpourmpakis Giannis,Froudakis George E.
Abstract
A variety of high and low level ab-initio calculations have been performed to calculate hydrogen's physisorption binding energy on carbon nanotube's walls. This study focuses on the performance of several functionals on treating the H2-carbon nanotube interaction within
the Density Functional Theory. Our results show that the behavior of the exchange functional in the low density region plays an important role in describing this weak van der Waals type of interaction. By comparing the binding energy values obtained on each theoretical level and interpreting
the results in terms of %wt percentages of hydrogen storage using the Langmuir isotherms, we proposed possible ways to treat computationally the hydrogen storage problem within the DFT.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献