Photoluminescence of Silica Nanostructures from Bioreactor Culture of Marine Diatom Nitzschia frustulum

Author:

Qin Tian,Gutu Timothy,Jiao Jun,Chang Chih-Hung,Rorrer Gregory L.

Abstract

The marine diatom Nitzschia frustulum is a single-celled photosynthetic organism that uses soluble silicon as the substrate to fabricate intricately patterned silica shells called frustules consisting of 200 nm diameter pores in a rectangular array. Controlled photobioreactor cultivation of the N. frustulum cell suspension to silicon starvation induced changes in the nanostructure of the diatom frustule, which in turn imparted blue photoluminescence (PL) to the frustule biosilica. The photoluminescent properties were imbedded within a patterned substrate precisely ordered at the nano, submicron and microscales. The peak PL intensity increased by a factor of 18 from the mid-exponential to late stationary phase of the cultivation cycle, and the peak PL wavelength increased from 440 to 500 nm. TEM analysis revealed that the emergence of blue photoluminescence was associated with the appearance of fine structures on the frustule surface, including 5 nm nanopore arrays lining the base of the frustule pores, which were only observed at the late stationary phase when both silicon consumption and cell division were complete for two photoperiods. Photoluminescence was quenched by thermal annealing of diatom biosilica in air at 800 °C for 1.0 hr, commensurate with the loss of silanol (≡Si-OH)groups on the diatom biosilica, as confirmed by FT-IR. Consequently, the likely origin of blue photoluminescence in the diatom biosilica was from surface silanol groups and their distribution on the frustule fine structures.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3