Author:
Erdem Emre,Matthes Anke,Böttcher Rolf,Gläsel Hans-Jürgen,Hartmann Eberhard
Abstract
Lead titanate (PbTiO3) micro- and nanocrystalline powders have been prepared from metallo-oranic precursor through combined polymerisation and pyrolysis (CPP). The enhanced liquid-precursor based version of the cpp route in combination with soft milling enables an adjustment
of the mean particle size up to 5 nm. A multi-frequency (X, Q, and W band) electron paramagnetic resonance study of Cr-doped micro- and nanocrystalline PbTiO3 samples was performed. Three Cr3+ centers (C1, C2, and C3) with different axial Zero Field Splitting (ZFS) parameters
were identified in micro-crystalline samples. The center C1 is similar to that observed in previous X band single crystal and ceramic sample measurements. The superposition model by Newman and Urban was applied to translate the ZFS data of these centers into local Cr3+ displacements
inside the distorted oxygen octahedra of the microcrystalline PbTiO3 lattice. In the nanocrystalline powders only the center C1 was observed. Its EPR spectra in dependence on the mean particle size were fitted using a spin-Hamiltonian in which a Gaussian distribution of ZFS terms
was assumed. The variation of the mean value of ZFS parameter D and distribution width ΔD was determined and the critical particle size of the size-driven phase (tetragonal-cubic) transition was estimated. In nanocrystalline powders with mean particle size d <
dcr the tetragonal C1 spectrum is not more detectable. A new Cr3+ center spectrum, C4, consisting of a single line with an isotropic g-factor is detectable allowing the cubic phase in the nanomaterials to be quantified. Further, temperature dependent EPR measurements
were made which allowed the variation in Curie temperature with mean particle size to be determined.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献