Author:
Blitz Jonathan P.,Christensen Jeannine M.,Deakyne Carol A.,Gun'ko Vladimir M.
Abstract
The functionalization of nanoporous and nanoparticulate silica surfaces requires a molecular level understanding of the chemistry and structures which result from surface reactions. Various types of reactive groups on silica can participate, giving rise to different nanostructures.
It is necessary to devise methods to alter the reactive nature of silica surfaces to control the nanoscale chemical structure. Various silica pretreatments are utilized to alter the silica surface prior to reaction with AlEt3, AlEtxCl3−x,
BEt3, BCl3, and TiCl4. Reactivities of these surface reactive reagents are compared. Aluminum compounds preferentially react with loss of alkane rather than HCl, in a thermodynamically controlled reaction as determined by ab initio computational methods.
Consideration of the structures resulting from reaction of the boron and aluminum compounds above with silica surface diols has been taken into account. Particular attention has been paid to the possibility of forming a cyclic 4-membered ring structure. While this is unlikely to form from
reactions with MCl3, such structures may be possible when reacting silicas with MMe3.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献