Shape-Controlled Growth of Indium and Aluminum Nanostructures on MoS2(0001)

Author:

Kushvaha S. S.,Xu H.,Zhang H. L.,Wee A. T. S.,Wang X.-S.

Abstract

The growth of indium and aluminum nanostructures on molybdenum disulphide (MoS2)(0001) substrate has been studied using scanning tunneling microscopy in ultra-high vacuum. At low coverage and room temperature (RT), mostly ultra-thin (∼1.2–2 nm) triangular In islands were observed on MoS2. With increasing coverage or high flux, large coalesced irregular islands along with triangular and round-shaped ones of increased average height were found. Triangular and round-shaped islands were obtained after annealing the RT-deposited In on MoS2 sample at 450 K. At ∼375 K, exclusively triangular In islands were observed. Al nanoparticles with diameter in 4–16 nm range were obtained after a low-flux deposited whereas ramified islands were observed in a high flux at RT. Ultra-thin (∼1.20–2 nm) Al islands and films were obtained on MoS2 after deposition at 500 K. These results demonstrate that the shape of In and Al nanostructures grown on MoS2 can be controlled in self-assembly by adjusting substrate temperature, deposition flux and amount.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3