The Synthesis of High Molecular Weight Partially Hydrolysed Poly(vinyl alcohol) Grades Suitable for Nanoparticle Fabrication

Author:

Chana Jasminder,Forbes Ben,Jones Stuart Allen

Abstract

Poly(vinyl alcohol) (PVA) is a highly versatile synthetic polymer that is formed by full or partial hydrolysis of poly(vinyl acetate) (PVAc). A wide range of PVA partially hydrolysed grades are commercially available, but the amphiphilic grades of the polymer (30–60% hydrolysis), which probably the most interesting in terms of drug delivery, are not readily available. As a consequence few studies have assessed the application of low hydrolysis PVA polymers to form nanocarriers. The aims of this study were to synthesise amphiphilic grades of PVA on a laboratory scale, analyse their chemical properties and determine whether these grades could be used to form nanoparticles. PVA 30%, PVA 40%, PVA 50% and PVA 60% were synthesised via direct saponification of PVAc. All grades of PVA synthesised had degrees of hydrolysis close to those predicted from the stoichiometry of the saponification reaction. The PVA grades displayed <1.5% batch to batch variability (n = 3) in terms of percentage hydrolysis, demonstrating the manufacture process was both reproducible and predictable. Analysis of the polymer characteristics using 13C nuclear magnetic resonance and differential scanning calorimetry revealed that all PVA grades contained block distributions (i.e., η < 1) of vinyl alcohol monomers (η ranged from 0.33–0.45) with a high probability of adjacency calculated for the hydroxylated units (POH ranged 0.926–0.931). All the grades of PVA formed nanoparticles using a precipitation technique with a trend towards smaller particle size with increasing degree of PVA hydrolysis; PVA 30% resulted in significantly larger nanoparticles (225 nm) compared to PVA 40–60% (137–174 nm).

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3