Nanoscale Chemical Effect on Friction Force

Author:

Hsieh Shuchen

Abstract

Self-assembled alkylsilane monolayers reduce friction on silicon surfaces. Bias-assisted nanolithography can be used to create chemical patterns on such films by the process of local oxidation, whereby an atomic force microscope is used to scan a biased tip across the surface in a pre-defined pattern. The chemistry of this process involves a redox reaction that oxidizes the terminal methyl groups of the film forming carboxyl groups in their place. In this study, we have prepared a sample designed specifically for measuring nanoscale chemical friction on a silicon substrate without topography effects. This unique sample possesses wide regions of both oxidized and unmodified film within a small area, so that direct measurement of the relative friction between the two films can be made within a single 1 μm scan, eliminating tip and sample inconsistencies that are common when comparing friction force measurements in consecutive scans or on different samples. Further, since the oxidation process modifies the film chemically, there is almost no contribution from the surface topography. We found that friction force increases as a function of applied load for both types of terminal groups and that the coefficient of friction for the carboxyl terminated region is five times greater than for the methyl terminated region. Moreover, friction force decreases for both surfaces as the tip velocity increases, though much more dramatically for the carboxyl terminated film. Both of these observations are consistent with a model that includes tip/sample bonding and localized condensation as the significant factors influencing chemically induced friction.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3