Simulation and Model Validation of a Multi-Concentration Points Concentrated Photovoltaic Thermal System

Author:

Hussain M. Imtiaz,Lee Gwi Hyun,Kim Jun-Tae

Abstract

In this study, the transient behavior of a concentrated photovoltaic thermal (CPV/T) system is assessed using one-dimensional mathematical model. The model is based on the heat balance of the concentrated photovoltaic (CPV) solar cells, receiver pipe, thermal fluid, insulation, and the storage tank attached to PV/T system via insulated pipes. The mathematical model was developed and solved using ordinary differential equation solvers in MATLAB® computer program. The interdependence thermo-electric dynamic responses of the CPV/T system were modeled and analyzed by considering two cases such as with and without glass enclosure around the receiver. The electrical and thermal efficiencies are evaluated as the function of enclosure effect, beam solar radiation, and circulating fluid flow rate. For the purpose of model validation, experimental measurements of the CPV/T system were performed. Satisfactory agreements were found between the experimental data and the predicted results. The developed dynamic model is most suitable to predict and evaluate the performance of a point-focused CPV/T system.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3