Magnetohydrodynamic Mixed Convection Heat and Mass Transfer of Nanofluid Flow Over a Stretching Wedge-Shaped Surface with the Effect of Thermophoresis and Brownian Motion

Author:

Hani Umme1,Ali Mohammad1,Alam Mohammad Shah1

Affiliation:

1. Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh

Abstract

The present study has been investigated to the consequence of the magnetic parameter, Grashof number, modified Grashof number, Prandtl number, thermal radiation parameter, Brownian motion parameter, thermophoresis parameter, heat generation parameter, Schmidt number, Biot number, stretching parameter, Lewis number, and chemical reaction parameter, respectively, over a stretching wedge of the magnetohydrodynamic (MHD) BL nanofluid flow. The main goal of this paper is to numerically investigate the nature of the MHD BL nanofluid flow along a stretching wedge-shaped surface with radiation, heat source, and chemical reaction parameters. The fundamental equations has been transformed into ordinary differential equations (ODEs) by the usual transformation. The numerical solutions are found by employing Runge-Kutta fourth-order method by exploiting symbolic software MATLAB via the shooting method. The novelty of the current study is implicated in the area of fluid dynamics to solve nonlinear differential equations numerically and is an important contribution to the field of nanofluids flow. Numerical solutions reveal that the concerned physical parameters lead to progress in the skin friction factor, rate of change of heat transfer as well as the rate of change of concentration. Brownian motion and thermophoresis parameters play a crucial role in the variation of temperature and concentration profiles and also in the development of thermal and concentration boundary layers.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3