Numerical Investigation of Nanofluids Mixed Convection in a Lid-Driven Cavity with Two Heat Sources

Author:

Bounib Meriem1,Bouhezza Aicha2,Teggar Mohamed3,Khelifa Abdelkrim4

Affiliation:

1. Department of Physics, Sciences Faculty, 20 August 1955-Skikda University, Skikda, 21000, Algeria

2. Department of Technology, Technology Faculty, 20 August 1955-Skikda University, Skikda, 21000, Algeria

3. Laboratory of Mechanics, University Amar Telidji, BP 37G, Laghouat, 03000, Algeria

4. Unité de Recherche Appliquée en Energies Renouvelables, URAER, Centre Développement des Energies Renouvelables, CDER, 47133, Ghardaïa, Algeria

Abstract

Heat transfer enhancement through using nanofluids improves energy efficiency and enables energy savings. In this paper, a nanofluids flow and heat transfer are numerically investigated in a cavity. Four nanoparticle types (CuO, Al2O3, ZnO and SiO2) dispersed in the base liquid (water) are considered. The cavity is partially heated by two identical sources placed on the vertical walls. Partial differential equations (PDEs) are solved using (ANSYS R2 (2020) software). The Maxwell physical model and the Brownian motion effect are used to calculate the thermal conductivity and dynamic viscosity considering the diameter of the nanoparticles. Numerical simulations are performed for various parameters including nanoparticle type, nanoparticle volume fraction (0 ≤ Φ ≤ 0.06), nanoparticle diameter (29 nm, 49 nm and 69 nm) and Richardson number (0.1 ≤ Ri ≤ 10). The streamlines, isotherms, and average Nusselt number are analyzed. The results of this study showed that the average Nusselt number increases with increasing the volume fraction of nanoparticles, and decreases with incrementing the nanoparticle diameter. The heat transfer increases as the Richardson number increases. The nanofluid SiO2-water is suggested as it showed the highest heat transfer rate among the investigated nanofluids. Using Φ = 6% nanoparticles with a diameter of 29 nm improves the average Nusselt number by 6.81%, 2.43% and 0.96% for SiO2, Al2O3, ZnO, respectively, when compared to CuO, for the right-wall (Nuaverage(1)), and 6.70%, 2.40% and 0.84% for the left wall (Nuaverage(2)).

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3