Analysis of Mixed Convection and Free Convection in a Reduced Solar Collector Using a Nanofluid as Heat Transfer Fluid

Author:

Cherif Soumia Baali1,Rahmoune Imene1,Bougoul Saadi1,Chamkha Ali J.2

Affiliation:

1. Department of Physics, Faculty of Matter Sciences, Applied Energetic Physics Laboratory (LPEA), University of Batna 1, 05000, Batna, Algeria

2. Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait

Abstract

A three-dimensional investigation of mixed convection which occurs from Al2O3-water nanofluid flow in tube of a reduced solar collector and free convection in air gap situated between cover of solar collector and its absorber was investigated. Heat transmission by conduction in absorber and cover as well as thermal losses to exterior expressed in form of a convective flux have also been taken into account. The different transport equations were solved using CFD-Fluent software which is founded on finite volume method and Boussinesq’s law was introduced to take into account of buoyancy effects. In this investigation, thermal efficiency of solar collector was evaluated and use of nanofluids allows to increase this parameter which is generally low for this kind of thermal systems. Length of thermal regime established in the tube is proposed and this investigation is extended relative to other works developed in this research field. Results obtained gave an idea about the flow structure of the fluid under consideration in a tube of a solar collector and heat transmission mechanisms in air gap and in other elements of the solar collector. These results can facilitate design of this thermal system.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3