Thermo-Convective Flows of Mono- and Hybrid-Nanofluids Over Horizontal Undulated Surfaces in a Porous Medium

Author:

Saha Richa1,Narayana Mahesha2,Siddheshwar P. G.1,Nagouda Smita S.1

Affiliation:

1. Department of Mathematics, Center for Mathematical Needs, CHRIST (Deemed to be University), Bangalore 560029, India

2. Department of Mathematics, The University of the West Indies, Mona Campus, Kingston 07, Jamaica

Abstract

This paper presents a comparative study between the thermo-convective flows of two mono- and one hybrid-nanofluid over three uniformly heated undulated surfaces (described by sinusoidal, sawtooth or triangular waveforms) embedded in a porous medium. The base fluid for each nanofluid is water, and the nanoparticles are copper, alumina or a copper-alumina mixture. Two different types of materials of the porous medium have been considered: aluminum foam and glass balls. This problem is governed by a system of nonlinear, coupled partial differential equations, which is solved using the Keller-Box method. The influences of each porous medium and the pertinent parameters on the nanofluid flows and heat transfer have been explored. It is seen that secondary flow occurs at large amplitudes of the surface undulations for the sinusoidal and triangular waveforms, but no such flow is observed in the case of the sawtooth waveform and the flat surface. To assess the heat transfer properties, the mean Nusselt number has been calculated. It is observed that the mean Nusselt number is higher in the porous medium of glass balls than aluminum foam. The heat transfer on the undulated surfaces is the highest in the case of a hybrid-nanofluid and the least for water-alumina.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3