Dual Solutions and Stability Analysis for Buongiorno Model of Magnetohydrodynamics Nanofluid Flow Past a Heated Shrinking Slippery Surface

Author:

Tshivhi Khodani Sherrif1,Makinde Oluwole Daniel1

Affiliation:

1. Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha, 7395, South Africa

Abstract

This study investigates the combined effects of magnetic field, Joule heating, viscous dissipation, thermophoresis, and Brownian motion towards a convectively heated shrinking and slippery surface on a stagnation point flow of nanofluid is theoretically examined. The modified Buongiorno model for nanofluid flow is employed and numerically solved using a shooting technique together with the Runge-Kutta-Fehlberg integration scheme. It is found that dual solutions appear in certain range of shrinking surface parameter. The temporal stability analysis of the dual solutions to small disturbances was performed and the upper solution branch is found to be a stable and physically realistic solution to the problem. Appropriate results showing the influence of magnetic field, Surface slipperiness, Eckert number, Biot number, Brownian motion, and thermophoresis parameters on the nanofluid temperature, velocity, nanoparticles concentration, Nusselt number, skin friction, and Sherwood number are quantitatively discussed, and depicted graphically and in tables.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3