Affiliation:
1. Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha, 7395, South Africa
Abstract
This study investigates the combined effects of magnetic field, Joule heating, viscous dissipation, thermophoresis, and Brownian motion towards a convectively heated shrinking and slippery surface on a stagnation point flow of nanofluid is theoretically examined. The modified Buongiorno
model for nanofluid flow is employed and numerically solved using a shooting technique together with the Runge-Kutta-Fehlberg integration scheme. It is found that dual solutions appear in certain range of shrinking surface parameter. The temporal stability analysis of the dual solutions to
small disturbances was performed and the upper solution branch is found to be a stable and physically realistic solution to the problem. Appropriate results showing the influence of magnetic field, Surface slipperiness, Eckert number, Biot number, Brownian motion, and thermophoresis parameters
on the nanofluid temperature, velocity, nanoparticles concentration, Nusselt number, skin friction, and Sherwood number are quantitatively discussed, and depicted graphically and in tables.
Publisher
American Scientific Publishers
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献