Effect of Cavity Undulations and Thermal Boundary Conditions on Natural Convection and Entropy Generation in CuO-Water/Al2O3-Water Nanofluid

Author:

Acharya Swastik1

Affiliation:

1. Department of Mechanical Engineering, Motilal Nehru National Institute of Technology, Allahabad 211004, India

Abstract

The present work reports natural convection and entropy generation inside the cavity (with a plane or undulated wall) filled with CuO-Water or Al2O3-Water nanofluid. The results are produced considering the effect of Rayleigh number, Darcy number, Hartmann number and volume fraction of nanofluid (Φ). Heat transfer improves with the mixing of nanoparticles only for the case of Da of 0.01 for all Ra. Various thermal boundary conditions such as uniform, sinusoidally and linearly varying temperature have been imposed at the wavy hot wall. It is found that the average surface Nu for the cavity with uniform temperature is more compared to sinusoidally or linearly varying temperature. Nu for a cavity filled with Al2O3-Water nanofluid is slightly lower than the CuOWater nanofluid for all cases. Local Nu for the plane and undulated wall has been plotted, which shows that it is maximum at the crest of the undulated wall. In addition to the heat transfer, entropy generation is determined against all the relevant parameters, which adds more value to the present work.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3