Diffusion Thermo and Chemical Reaction Effects on Magnetohydrodynamic Jeffrey Nanofluid Over an Inclined Vertical Plate in the Presence of Radiation Absorption and Constant Heat Source

Author:

Raghunath K.1,Ramana R. Mohana2,Reddy V. Ramachandra3,Obulesu M.4

Affiliation:

1. Department of Humanities and Sciences, Bheema Institute of Technology and Science, Adoni, Kurnool Dist, 518301, A.P., India

2. Department of Basic Science and Humanities (Mathematics), Narasaraopeta Engineering College, Narasaraopeta, 522601, A.P., India

3. Department of Humanities and Sciences, K.S.R.M College of Engineering, Kadapa, 516003, A.P., India

4. Department of Mathematics, Siddharth Institute of Engineering & Technology, Puttur, 517583, A.P., India

Abstract

This article investigates the Diffusion thermo and chemical reaction effects on the free convection heat and mass transfer flow of Jeffrey nanofluids (Cu and TiO2) over an inclined porous vertical plate embedded in a porous medium in the presence of radiation absorption and constant heat source under fluctuating boundary conditions. The plate is moved with a constant velocity U0, temperature and the concentration are assumed to be fluctuating with time harmonically from a constant mean at the plate. Perturbation technique is applied to solve the governing equations of the flow and pointed out the variations in velocity, temperature and concentration with the use of graphical presentations. The impact of several parameters on local skin friction, Nusselt number and Sherwood number is also noticed and discussed. It is concluded that the resultant velocity reduces with increasing Jeffrey parameter and Suction parameter, velocity and Temperature enhances with increasing Radiation absorption parameter. Also it is noticed that the solutal boundary layer thickness decreases with an increase in chemical reaction parameter. It is because chemical molecular diffusivity reduces for higher values of Kr.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3