Numerical Analysis of Magnetic Field Effect on Ferro Particle Suspended Nanofluid Filled Square Enclosure Consist of Heat Generating Body

Author:

Umadevi P.1,Begum A. Shamadhani2,Chamkha Ali J.3,Maheshwari G.1

Affiliation:

1. Department of Mathematics, Dr. N.G.P. Arts and Science College, Tamilnadu 641048, India

2. Department of Science and Humanities, Karpagam College of Engineering, Tamilnadu 641032, India

3. Faculty of Engineering, Kuwait College of Science and Technology, Doha District, 35004, Kuwait

Abstract

In presents of a magnetic field, an enclosure filled with ferro-particle suspended nanofluid is subjected to a numerical analysis to investigate natural convective heat transfer. At the center of the enclosure is a heat conducting and generating solid body, and the enclosure is influenced by four different thermal boundary conditions. To solve the governing equation, a Fortran algorithm based on the finite volume approach was created. The numerical approach used in this study produces consistent results for a variety of non-dimensional parameters like Rayleigh number (104 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 100), solid volume fraction (0 ≤ φ ≤ 0.2) and distributed wall temperature. Streamlines, isotherms, and the Nusselt number graph are used to describe the flow and heat transfer properties. Based on this study, It has been noted that improved heat transfer for lower Hartmann number with higher Rayleigh number particularly along sinusoidal wall. For the low Hartmann number, the fluid flow enhances for higher Rayleigh number. In particular, the presence of ferro-particle suspended nanofluid enhances the heat transfer rate. Moreover, this study has found that the inclusion of magnetic fields and nanoparticles can increase heat transfer by up to 60%. The suggested methods in this research can assist manufacturers improve efficiency without increasing heat generator space in industrial applications for cooling or heating.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3