Affiliation:
1. Department of Mathematics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow 226025, Uttar Pradesh, India
Abstract
The stability analysis of tri-hybrid nanofluid is examined theoretically in the presence of three types of gravity modulation. Normal mode techniques have been carried out for linear stability analysis, and the truncated Fourier series method is used for non-linear analysis. We observe
both stationary and oscillatory convection is possible in the bottom-heavy case, and the onset of convection gets delayed in stationary in comparison to oscillatory. We also observe the onset of convection is earlier in the case of top-heavy with respect to bottom-heavy. Heat and mass transport
start earlier in the day–night profile in comparison to other profiles of gravity modulation. In the graph of nusselt number, mass transfer of the first particle increases with an increase in Rn1 value while other two concentration Rayleigh numbers (Rn2,
Rn3) does not have any effect on first concentration nusselt number. If we generalize the problem for n-different types of nanoparticles, then two cases may be possible (1) Top-heavy-ordinary nanofluids will be the most stabilizing case. (2) Bottom-heavy-nanofluids with n-type
particles will be the most stabilizing case. The most stabilizing case is possible with the same ratio of Rn in the top-heavy, whereas the opposite result is found in the bottom-heavy.
Publisher
American Scientific Publishers
Subject
Fluid Flow and Transfer Processes,Mechanical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献