Instability Analysis of Tri-Hybrid Nanofluid Under the Influence of Three Types of Gravity Modulation

Author:

Kumar Awanish1,Bhadauria B. S.1,Shilpee 1

Affiliation:

1. Department of Mathematics, School of Physical and Decision Sciences, Babasaheb Bhimrao Ambedkar University, (A Central University), Lucknow 226025, Uttar Pradesh, India

Abstract

The stability analysis of tri-hybrid nanofluid is examined theoretically in the presence of three types of gravity modulation. Normal mode techniques have been carried out for linear stability analysis, and the truncated Fourier series method is used for non-linear analysis. We observe both stationary and oscillatory convection is possible in the bottom-heavy case, and the onset of convection gets delayed in stationary in comparison to oscillatory. We also observe the onset of convection is earlier in the case of top-heavy with respect to bottom-heavy. Heat and mass transport start earlier in the day–night profile in comparison to other profiles of gravity modulation. In the graph of nusselt number, mass transfer of the first particle increases with an increase in Rn1 value while other two concentration Rayleigh numbers (Rn2, Rn3) does not have any effect on first concentration nusselt number. If we generalize the problem for n-different types of nanoparticles, then two cases may be possible (1) Top-heavy-ordinary nanofluids will be the most stabilizing case. (2) Bottom-heavy-nanofluids with n-type particles will be the most stabilizing case. The most stabilizing case is possible with the same ratio of Rn in the top-heavy, whereas the opposite result is found in the bottom-heavy.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3