Numerical Solution of Radiative and Dissipative Flow on Non-Newtonian Casson Fluid Model via Infinite Vertical Plate with Thermo-Diffusion and Diffusion-Thermo Effects

Author:

Sunder Ram M.1,Ashok N.1,Shamshuddin MD.2

Affiliation:

1. Department of Mathematics and Statistics, Chaitanya Deemed to be University, Kishanpura, Hanamkonda, Warangal 506001, Telangana, India

2. Department of Mathematics, School of Sciences, SR University, Warangal 506371, Telangana, India

Abstract

This research presents mathematically developed model to examine non-Newtonian Casson fluid flow in the existence of radiation, Ohmic dissipation, thermo-diffusion and diffusion-thermo over infinite vertical plate domain. Using similarity transformations, the governing partial derivative related to fluid model is transmuted to ordinary derivative equations and then solved computationally by adopting Runge-Kutta method via shooting quadrature in mathematical software MAPLE. The impacts of various considered effects were assed and solutions for momentum velocity profiles, heat transfer energy and mass transfer concentration profiles are investigated via graphical presentation. The outcomes show that radiation and magnetic field increased heat distribution and improvement in yield stress through an enhancement in Casson term reduces the flow speed. Presence of Cross diffusion terms has remarkable impact on thermal and solutal profiles. Further, numerical significances of engineering quantities such as skin friction, Nusselt number and Sherwood number are provided in tabular form. Finally, to justify the outcomes of this study, a resemblance is taken with earlier published works and found there is good correlation.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3