Mixed Convection of Cu–H2O Nanofluid in a Darcy–Forchheimer Porous Medium Microchannel with Thermal Radiation and Convective Heating

Author:

Rikitu Ebba Hindebu1,Makinde Oluwole Daniel2

Affiliation:

1. Applied Mathematics Department, Adama Science and Technology University, P. O. Box 1888, Adama, Ethiopia

2. Faculty of Military Science, Stellenbosch University, Private Bag X2, Saldanha, 7395, South Africa

Abstract

Heat transfer and convective flow of Cu–H2O nanofluid in a microchannel with thermal radiation has many attributes in engineering, industries, and biomedical sciences including cooling of electronics, drug delivery, cancer therapy, optics, missiles, satellites, and lubricants. Therefore, this paper aims to investigate the hydrodynamical behaviors and heat transfer characteristics of Cu–H2O nanofluid through a porous medium microchannel with thermal radiation and convective heating. The highly non-linear partial differential equations that govern the momentum and energy equations are formulated, non-dimensionalized, transformed into ordinary differential equations and solved numerically via the fourth order Runge-Kutta integration scheme. Consequently, the numerical simulation reveals that the nanofluid velocity and temperature profiles show a rising pattern with increasing values of the pressure gradient parameter, variable viscosity parameter, Darcy number, thermal Grashof number and Eckert number. The temperature profile escalates with the Prandtl number however it diminishes with the Biot number, Forchheimer number, suction/injection Reynolds number and nanoparticles volume fraction. Furthermore, the thermal radiation parameter indicates a retarding effect on the temperature profile and hence, radiation quite effectively controls the microchannel temperature distribution which plays a significant role in cooling the flow transport system. The skin friction coefficient at both microchannel walls indicates a rising pattern with the suction/injection Reynolds number, thermal Grashof number, Eckert number and Darcy number. Moreover, at both microchannel walls the heat transfer rate enhances for large values of the suction/injection Reynolds number, thermal Grashof number, Eckert number, variable viscosity parameter and Darcy number whereas it decreases with the thermal radiation parameter, Forchheimer number and nanoparticles volume fraction. The Biot number reveals an opposite effect on the heat transfer rate at the left and right walls of the microvhannel.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3