Thermal Diffusion and Diffusion Thermo Effects on Chemically Reacting Nanofluid Flow Towards A Vertical Cone Filled by Porous Medium

Author:

Sathyanarayana M.1,Goud T. Ramakrishna2

Affiliation:

1. Department of Mathematics, University College of Science, Osmania University, Hyderabad 500007, Telangana State, India

2. Department of Mathematics, University College of Science, Saifabad, Hyderabad, 500004, Telangana State, India

Abstract

Nano particles, chemical reactions, and porous media are all used in this study to look at how thermal diffusion in addition diffusion thermo work together to affect liquid that is immiscible, slurries, but instead conducts electricity flow toward a vertical cone. There is a concentration equation and an energy equation for this question. There are thermal diffusion and chemical reaction effects in both of these equations. It is done by making use of correspondence transformations make governing dynamic system with optimization algorithms of the flow into Algebraic calculations that are quasi, which then statistically solved by means of the Rung-Kutta method, there are graphs in the findings and discussion section that show how different engineering factors can affect speed, features of temperature moreover concentration. Furthermore, consequences about these factors Nu and Sh statistics for skin friction quantity also discussed and as seen in tables. By comparing present results to data that has already been published, we can see that they are very accurate. Increases with in Brownian motion attribute as well as thermal diffusion attribute significantly raise its density boundary layer. It is indeed worth noting that as solute concentration as the condensation variable is increased, the penetration depth declines. That’s for the reason that the compound genomic dispersion decreases as the temperature rises. Kr as a result, values pertaining to Dufour numeral rise, Temperature profiles are similarly rises. Expansion Enhanced Nano fluid intensity dispersion as well as expanded the Thermal diffusion attribute reverse effect in the situation of Brownian locomotion effect, can be seen. These concentration profiles are increasing with rising values of Soret number parameter.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3