Thermogravitational Convection in a Multiple Baffled Enclosure Filled with Magneto-Hybrid Nanofluid Subjected to Magnetic Field Dependent Viscosity

Author:

Pandit Swapan K.1,Chattopadhyay Anirban2,Malo Rupchand3,Goswami Krishno D.4

Affiliation:

1. Integrated Science of Education and Research Centre (ISERC), 731235, India

2. Department of Mathematics, Government General Degree College, Ranibandh, Bankura, West Bengal 722135, India

3. Department of Mathematics, Visva-Bharati, Santiniketan, West Bengal 731235, India

4. Department of Mathematics, SRM Institute of Science and Technology Kattankulathur, Tamilnadu 603203, India

Abstract

This study explores the significant impacts of thin baffles and magnetic field dependent viscosity on magnetohydrodynamic (MHD) thermogravitational convection of Cu-Al2O3 (50%–50%) water hybrid nanoliquid in a cavity. Considering different arrangements of baffle sticks on both the vertical walls, four geometrical configurations (Case-I, Case-II, Case-III and Case-IV) have been analyzed. Numerical simulation has been performed for the governing Navier-Stokes (N-S) equations in streamfunction - vorticity form having energy equation. These coupled equations are solved by proposing a higher-order compact finite difference method. The combination of five important aspects (hybrid nanofluid, multiple baffles, magnetic field dependent viscosity (MFDV), magnetic field and compact computation) signifies the novelty of this work. Fluid flow and transportation of thermal energy within the stipulated domain are presented for various flow pertinent parameters. The outcomes show that the increase in number of baffles diminishes the average Nusselt number values. It is concluded here that an increase in Hartmann number from 0 to 90 leads to a decrease in average Nusselt number up to 23.7% for Case-I, 23.8% for Case-II, 21.2% for Case-III and 28% for Case-IV in presence of MFDV effects.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3