Numerical Analysis of Magnetohydrodynamic and Dissipated Hybrid Casson Nanofluid Flow Over an Unsteady Stretchable Rotating Disk with Cattaneo-Christov Heat Flux Model

Author:

Tulu Ayele1

Affiliation:

1. Department of Mathematics, Ambo University, Ambo, Ethiopia

Abstract

The study scrutinized MHD and dissipated (SWCNTs-Fe3O4)/C2H6O2 hybrid Casson nanofluids flow over an unsteady stretchable rotating disk with a Cattaneo-Christov heat flux model. By means of proper similarity conversion, the boundary layer flow governing PDEs was changed into systems of dimensionless coupled nonlinear ordinary differential equations. Subsequently, the consequent nonlinear momentum and energy equations with their boundary conditions were worked out numerically employing the spectral quasilinearization method (SQLM). The convergence, stability, and accuracy of the SQLM were established as a computationally efficient method to solve a coupled system of boundary layer problems. It is specified that 5% of SWCNTs, 20% of Fe3O4, and 75% of C2H6O2 being taken for the preparation of (SWCNTs−Fe3O4)/C2H6O2 hybrid nanofluid with shape factor n1 = n2 = 3, and the values of the parameters used are fixed to M = 5, S = 0.5, β = 5, κ = 0.5, Ec = 2, Λ = 2, Pr = 7.3, α = 0.5, δ = 0. The effects of more perceptible parameters on velocity and thermal flow fields were considered and scrutinized carefully via graphs and tables. The results disclose that the momentum and thermal boundary layer thickness markedly declined with more value of the unsteady parameter. The local heat transfer rate improves nearly by 14% as 0.2 volume of Fe3O4 nanoparticles dispersed in 0.05 volume of SWCNTs and 0.75 volume of C2H6O2 nanofluid, hence, in realistic uses adding more values of nanoparticles in the hybrid nanofluids is useful to progress the heating process. The study is novel since to the best of the author’s knowledge, no paper has been published so far on the unsteady flow of (SWNT-Fe3O4)-Ethylene glycol hybrid Casson nanofluid with the effects of the Cattaneo-Christov heat flux model. As well, the model used for the thermophysical properties of the hybrid nanofluid is a new approach. Generally, hybrid nanofluids of (SWCNTs-Fe3O4)/C2H6O2 show better flow distributions with good stability of thermal properties than their mono counterparts.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3