Magnetohydrodynamic Darcy-Forchheimer Squeezed Flow of Casson Nanofluid Over Horizontal Channel with Activation Energy and Thermal Radiation

Author:

Deepthi V. V. L.1,Srinivasa Raju R.2

Affiliation:

1. Department of Mathematics, CVR College of Engineering, Hyderabad, 501506, Telangana State, India

2. Department of Mathematics, GITAM University (Deemed to be University), Hyderabad Campus, Rudraram, Sanga Reddy (Dt), 502329, Telangana State, India

Abstract

The most well-known research areas in computational fluid dynamics are concerned with the interplay of fluid flow with chemical reaction and activation energy. According to the findings of several studies, its industrial applications include simulating the flow inside a nuclear reactor, for which it has received appreciation from many researchers. This study, driven by the use of flow in industrial challenges, explores the impacts of activation energy and chemical reaction on the magnetohydrodynamic (MHD) Darcy–Forchheimer squeezed Casson fluid flow through a porous material across the horizontal channel. The flow is produced when two horizontal plates are compressed to create more space between them. By using similarity variables, one may successfully convert partial differential equations (PDEs) to ordinary differential equations (ODEs). The shooting technique was used to carry out the numerical analysis, which entailed solving the competent governing equations with dominating parameters for a thin liquid layer. This was done to determine the results of the study. To validate the current solutions, it is vital to evaluate the numerical findings alongside the results of the prior research. The findings indicate that fluid velocity and temperature increases may be expected as the plates are brought closer together. In addition, there was a correlation between a rise in the Hartmann number and a decrease in the fluid’s velocity and concentration because of the existence of strong Lorentz forces. The temperature and the concentration of the liquid will increase due to the Brownian motion. When the Darcy–Forchheimer and activation energy parameters are both increased, the velocity and concentration decrease.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3