Optimizing Rapid Prototype Development Through Femtosecond Laser Ablation and Finite Element Method Simulation for Enhanced Separation in Microfluidics

Author:

Hamad Eyad M.1,Albagdady Ahmed2,Al-Gharabli Samer3,Alkhadire Hamza1,Alnaser Yousef1,Shadid Hakim1,Abdo Ahmed1,Dietzel Andreas4,Al-Halhouli Ala’aldeen5

Affiliation:

1. Biomedical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan

2. Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK

3. Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman, 11180, Jordan

4. Institut für Mikrotechnik, Technische Universität Braunschweig, 38124, Braunschweig, Germany

5. NanoLab, School of Applied Technical Sciences, German Jordanian University (GJU), Amman, 11180, Jordan

Abstract

In recent years, microfluidic systems have emerged as promising tools for blood separation and analysis. However, conventional methods for prototyping microfluidic systems can be slow and expensive. In this study, we present a novel approach to rapid prototyping that combines femtosecond laser ablation and finite element method (FEM) simulation. The optimization of the prototyping process was achieved through systematic characterization of the laser ablation process and the application of FEM simulation to predict the flow behavior of the microfluidic devices. Using a dean-coupled inertial flow device (DCIFD) that comprises one channel bend and three outlets side-channels. DCIF is a phenomenon that occurs in curved microfluidic channels and is considered by the existence of inconsequential flow patterns perpendicular to the main flow direction. The DCIF can enhance the separation efficiency in microfluidic devices by inducing lateral migration of particles or cells towards specific locations along the channel. This lateral migration can be controlled by adjusting the curvature and dimensions of the channel, as well as the flow rate and properties of the fluid. Overall, DCIF can provide a valuable means of achieving efficient and high-throughput separation of particles or cells in microfluidic devices. Therefore, various microfluidics designs that contain different outlet channels were studied in this research to improve blood plasma separation efficiency. Results from imitated blood flow experiments showed positive results for fluid flow and particle separation. The study also found that incorporating three various channel widths is the key to achieving efficient plasma separation, indicating that this result could serve as a guideline for future microfluidics geometry specifications in the field of blood plasma separation. According to the FEM simulation, the highest separation percentage for both microparticle sizes was obtained by incorporating a variable outlet channel width into the same microfluidic device. The FEM simulation revealed that around 95% of the larger microparticles separated while 98% of the smaller microparticles separated. This is consistent with the imitated blood separation results, which showed that 91% of the larger microparticles separated and around 93% of the smaller microparticles were separated. Overall, our results demonstrate that the combination of femtosecond laser ablation and FEM simulation significantly improved the prototyping speed and efficiency while maintaining high blood separation performance.

Publisher

American Scientific Publishers

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3