Influence of Nanocomposite Surface Coating on Biofilm Formation In Situ

Author:

Hannig M.,Kriener L.,Hoth-Hannig W.,Becker-Willinger C.,Schmidt H.

Abstract

Caries and periodontitis, the most wide-spread oral diseases around the world, are caused by bacterial adherence and biofilm formation onto the natural as well as restored tooth surface. One possible way to prevent the pathogenic consequences of intraoral biofilm formation might be the modification of the tooth surface by application of an anti-adhesive coating that interferes with the bacterial attachment and subsequent bacterial accumulation. The objective of this study was to investigate the effect of an experimental, low surface free energy nano-composite coating material on biofilm formation in situ. For this purpose, an organic/inorganic nano-composite coating (NANOMER®, INM, Saarbrücken, Germany) with a surface free energy of 18–20 mJ/m2 was applied to enamel as well as titanium specimens. The nano-composite coated specimens and un-coated controls were attached to removable intraoral splints and carried by volunteers over 24 h in the oral cavity. After intraoral exposure, specimens were processed for transmission electron microscopic analysis. On non-coated enamel and titanium control samples a multi-layer of adherent bacteria was found. In contrast, on nano-composite coated specimens strongly reduced biofilm formation was observed. In most areas of the surface-coated specimens only a 10–20 nm thick electron dense layer of adsorbed salivary proteins with adherent protein agglomerates of 20–80 nm diameter could be detected. In addition, detachment of the adsorbed biofilm from the nano-composite coated surfaces was evident in electron microscopic micrographs. The present investigation provides ultrastructural evidence that it is possible to cover enamel as well as titanium with a nano-composite coating revealing easy-to-clean surface properties that cause reduced biofilm formation and accelerated removal of adherent biofilms under oral conditions.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3