A Single-Source Solid-Precursor Method for Making Eco-Friendly Doped Semiconductor Nanoparticles Emitting Multi-Color Luminescence

Author:

Manzoor K.,Aditya V.,Vadera S. R.,Kumar N.,Kutty T. R. N.

Abstract

A novel synthesis method is presented for the preparation of eco-friendly, doped semiconductor nanocrystals encapsulated within oxide-shells, both formed sequentially from a single-source solid-precursor. Highly luminescent ZnS nanoparticles, in situ doped with Cu+–Al3+ pairs and encapsulated with ZnO shells are prepared by the thermal decomposition of a solid-precursor compound, zinc sulfato-thiourea-oxyhydroxide, showing layered crystal structure. The precursor compound is prepared by an aqueous wet-chemical reaction involving necessary chemical reagents required for the precipitation, doping and inorganic surface capping of the nanoparticles. The elemental analysis (C, H, N, S, O, Zn), quantitative estimation of different chemical groups (SO2−4 and NH4) and infrared studies suggested that the precursor compound is formed by the intercalation of thiourea, and/or its derivatives thiocarbamate (CSNH2), dithiocarbamate (CS2NH2), etc., and ammonia into the gallery space of zinc-sulfato-oxyhydroxide corbel where the ZnII ions are both in the octahedral as well as tetrahedral coordination in the ratio 3 : 2 and the dopant ions are incorporated within octahedral voids. The powder X-ray diffraction of precursor compound shows high intensity basal reflection corresponding to the large lattice-plane spacing of d = 11.23 Å and the Rietveld analysis suggested orthorhombic structure with a = 9.71 Å, b = 12.48 Å, c = 26.43 Å, and β = 90°. Transmission electron microscopy studies show the presence of micrometer sized acicular monocrystallites with prismatic platy morphology. Controlled thermolysis of the solid-precursor at 70–110 °C leads to the collapse of layered structure due to the hydrolysis of interlayer thiourea molecules or its derivatives and the S2− ions liberated thereby reacts with the tetrahedral ZnII atoms leading to the precipitation of ZnS nanoparticles at the gallery space. During this process, the dopant ions situated at octahedral voids gets incorporated into the nano-ZnS lattice and results in bright photoluminescence. On further heat treatment above 1100 °C, the corbel zinc-oxyhydroxide sheets undergo dehydroxylation to form ZnO which eventually encapsulates the ZnS nanoparticles at the gallery leading to significant enhancement in the luminescence quantum efficiency, up to ∼22%. The emission color of thus formed nano-ZnS/micro-ZnO composites could be tuned over wide spectral ranges from 480 to 618 nm and the spectral changes are attributed to a number of factors including lattice defects, Cu+–Al3+ dopant-pairs and iso-electronic oxygen in nano-ZnS and oxygen-vacancy or -interstitial centers in non-stoichiometric ZnO.

Publisher

American Scientific Publishers

Subject

Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3