Author:
Das Soumen,Basu Soumen,Majumdar Gautam,Chakravorty Dipankar,Chaudhuri S.
Abstract
Sol–gel synthesized SnO2 nanoparticles with an average size of 2.0 nm obtained at 373 K were gradually annealed to 673 K in air for 25 minutes. Sequentially taken transmission electron microscopy (TEM) images showed that particle agglomeration of these non-matrix SnO2
nanocrystals was a very slow process. The blue shifts of the band gap (∼ 2.3 eV) obtained from the optical absorbance spectra were matched with the theoretical results of the size related excitonic binding energies. These calculations also supported the observed slow grain growth. The
depth sensitive hardness measurements of the thin films indicated hardness in the range of 5.03 GPa to 6.79 GPa. These undoped and non-matrix SnO2 nanoparticles were also investigated with the X-ray photoelectrons spectroscopy (XPS), atomic force microscope (AFM), X-ray diffraction
spectroscopy (XRD), and ac impedance analyzer.
Publisher
American Scientific Publishers
Subject
Condensed Matter Physics,General Materials Science,Biomedical Engineering,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献