Power Transformer Price Forecasting Method Based on Variational Modal Decomposition and Improved Chaotic Grey Wolf Optimization-Random Forest

Author:

Liu Shuanglin1,Qiu Xiaolong1,Dun Zhuo1

Affiliation:

1. State Grid Hebei Tending Co., Ltd., Shijiazhuang, 050031, China

Abstract

To reasonably estimate the cost of power transformers, the price trends of power transformers are analyzed based on data mining techniques. A power transformer price prediction method is proposed. This method first conducts Pearson correlation analysis on the influencing factors of power transformer prices, and extracts the main influencing factors to obtain the training data set. Second, the historical price data of power transformers are decomposed using variational modal decomposition, and the trends of each modal component are analyzed. Third, the decision tree parameters and splitting feature parameters in the random forest regression model are optimized using the improved chaotic gray wolf algorithm, and each modal component is further predicted. Finally, multilayer prediction results are accumulated to calculate the power transformer price results. The results of the computational examples show that the improved random forest can accurately predict the price changes of power transformers. Thus, it can effectively improve the level of material procurement and reduce the influence of human factors.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Short-Term Electricity Load Forecasting Based on Back Propagation Neural Network Considering Key Meteorological Factors;2023 6th International Conference on Electrical Engineering and Green Energy (CEEGE);2023-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3