Study on Carrier Mobility Model for PD-Ge Monolithic Optoelectronic Integration Chips

Author:

Yuan Ren,Jianjun Song,Wen Yang,Xianying Dai,Tianlong Zhao

Abstract

Based on the difference of thermal expansion coefficient between Si and Ge, low-intensity tensile stress can be introduced into Ge epitaxial layer on Si substrate. S-Ge/Si semiconductor (as known as low tensile strained Ge grown on Si substrate) has a higher carrier mobility when compared with unstrained-Ge or Si material, so that s-Ge/Si is appropriate for the production of high-speed circuit. At the same time, transformation from indirect bandgap semiconductor Ge into Pseudo-Direct bandgap semiconductor (which is also called PD-Ge) will be happen after s-Ge/Si is heavy doped, which makes LED produced of PD-Ge material perform a higher luminous efficiency because the radiative recombining probability of carriers in PD-Ge material is greatly improved compared with unstrained one. Taking the advantages referred of s-Ge/Si into account, s-Ge/Si has the potential to PD-Ge monolithic optoelectronic integration. Carrier mobility of the semiconductor is one of the key physical parameters during the design and simulation of PD-Ge monolithic optoelectronic integrated system. While as far as the authors are aware, carrier mobility model of s-Ge/Si is still rarely reported to date. In view of that all above, based on the E-k relation in both conduction band and valence band of s-Ge/Si material, the analytical models of physical parameters in energy band are established, and the models are verified by experiments. Then the s-Ge/Si carrier models are further established based on our band structure model, and the Monte Carlo method is used to verify our s-Ge/Si carrier mobility model. The quantificational results of our paper will help understand s-Ge/Si material physics and provide an important theoretical basis for the design of PD-Ge monolithic optoelectronic integration.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3