Application of Fiber Bragg Grating Technology in Spacecraft Structural Fault Detection

Author:

Zheng Xingyu

Abstract

With the prolongation of the service life of spacecraft, the structural failure of spacecraft caused by air resistance and aging poses a direct threat to the safe operation of spacecraft. The structural failure of aircraft is concerned by many researchers. Among them, the fiber Bragg grating (FBG) sensor has become a hotspot of aircraft structural fault research because of its good performance. Facing the difficulties of structural fault location of traditional spacecraft, slow data updating speed and poor transplant ability of positioning device, a structural fault angle measurement model based on FBG strain flower is constructed by combining FBG sensor with the principle of right-angle strain flower. On the problem of determining the main strain orientation, two groups of FBG strain rosette locations are selected to determine, and different groups of locations are cross-solved to obtain the original coordinates of impact. At the same time, aiming at the structural problems of four simple thin plates in the aircraft, a method of judging the structural load based on the disturbance trend is proposed. In the process of experiment, it is necessary to test the positioning accuracy of the structure obtained by the sensor and the size error of the load. In order to better simulate the real scene, a simulation platform of aircraft structure impact is built. During the testing process, it is found that the sensor detection platform proposed in this study can locate structural faults within 2.8 cm. The average time required for location judgment is about 1.7 ms, and the error of structural impact force is about 2.86 N. Through this study, a new detection method for structural fault detection of spacecraft is proposed, which can better ensure the safety of spacecraft.

Publisher

American Scientific Publishers

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3