Stiffness Measurement of Micro-Cantilever Based on Negative Electrostatic Stiffness
-
Published:2020-01-01
Issue:1
Volume:12
Page:96-100
-
ISSN:1941-4900
-
Container-title:Nanoscience and Nanotechnology Letters
-
language:en
-
Short-container-title:nanosci nanotechnol lett
Author:
Dong Xianshan,Huang Qinwen,Huang Yun,Su Wei,Lai Ping
Abstract
Micro-cantilever is basic structure of Micro-Electro-Mechanical-Systems (MEMS) sensor, and mechanical stiffness is the most important parameter of micro-cantilever. The mechanical stiffness can be affected by shape, size and material, and it should be experimentally measured for fabrication
variation. Yet, the micro scale of MEMS cantilever makes the measurement difficult, and the traditional method isn't suitable for the micro-cantilever. This study proposes a new method for measuring the mechanical stiffness of micro-cantilever, and measurement of MEMS accelerometer was also
experimentally carried out. The proposed method exploits the feature that the voltage applied on cantilever can lead to negative electrostatic stiffness, and this stiffness can change the deformation of cantilever. The mechanical stiffness can be obtained through analyzing the change of output.
Results from this study coincided with our theoretical model, and the difference between results obtained by this method and SEM was 2.2%. This work provides a new way to precisely obtain mechanical stiffness of micro-cantilever using non-destructive method, making it helpful for researchers
to design micro-cantilever and MEMS devices.
Publisher
American Scientific Publishers
Subject
General Materials Science